© 1991 Federation of European Biochemical Societies 00145793/91/\$3.50 ADONIS 001457939100635S

Sphingosine stimulates calcium mobilization in rat parotid acinar cells

Hiroshi Sugiya and Shunsuke Furuyama

Department of Physiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba 271, Japan

Received 6 May 1991

In fura-2-loaded parotid acinar cells, 50–200 μ M sphingosine induced an increase in cytosolic Ca²⁺ ([Ca²⁺]_i). When extracellular Ca²⁺ was chelated by EGTA, 50 μ M sphingosine failed to increase [Ca²⁺]_i, but 100 or 200 μ M sphingosine induced a slight and transient increase in [Ca²⁺]_i. The addition of LaCl₃ to the medium resulted in the same effect as chelation of extracellular Ca²⁺. When cells were incubated in low Ca²⁺ medium containing sphingosine, and extracellular Ca²⁺ was subsequently added, a rapid increase in [Ca²⁺]_i depending on the concentration of sphingosine was shown. In low Ca²⁺ medium, a slight increase in [Ca²⁺]_i induced by high concentrations of sphingosine was not shown after the transient increase in [Ca²⁺]_i elicited by methacholine. Inhibitors of protein kinase C, H-7 and K252a, did not mimic the effect of sphingosine on [Ca²⁺]_i. These results suggest that sphingosine stimulates Ca²⁺-influx and further stimulates the release of Ca²⁺ from agonist-sensitive intracellular pools by a mechanism that is independent of protein kinase C.

Sphingosine; Ca²⁺ mobilization; Protein kinase C (rat parotid)

1. INTRODUCTION

Sphingosine, the basic unit of sphingolipids, has been suggested as one of the endogenous modulators of cell functions [1,2]. This molecule and related derivatives have been reported to inhibit protein kinase C activation in vitro [3]. Similarly, various events mediated by protein kinase C such as secretion and aggregation by agonists in platelets [4], oxidative burst in neutrophiles [5] and differentiation of HL-60 cells [6] are inhibited by sphingosine. On the other hand, in pituitary cells, thyrotropin-releasing hormone binding to membranes was inhibited by sphingosine independently of protein kinase C [7]. In A431 human epidermoid carcinoma cells and chinese hamster ovary cells, sphingosine increased the affinity and number of receptors for epidermal growth factor via a protein kinase C-independent mechanism [8].

Rat parotid acinar cells have been used extensively as an excellent model for the study of a signaling system related to Ca²⁺ mobilization [9,10]. In the present work, the effect of sphingosine on the changes in [Ca²⁺]_i in rat parotid acinar cells was investigated using the intracellular Ca²⁺ indicator, fura-2. The results indicate that sphingosine stimulates the increase in [Ca²⁺]_i. The mechanism is mostly dependent upon the presence of extracellular Ca²⁺ and is independent of protein kinase C. The role of sphingosine on Ca²⁺ mobilization in parotid acinar cells is suggested.

Correspondence address: Fl. Sugiya, Department of Physiology, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaechonishi, Matsudo, Chiba 271, Japan. Fax: (81) (473) 646295

2. MATERIALS AND METHODS

2.1. Materials

Fura-2/AM was obtained from Dojindo Lab. (Japan). H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperadine) was from Seikagaku Kogyo (Japan). Collagenase (Clostridium histolyticum) was from Boehringer Mannheim (Germany). Other reagents were obtained from Sigma (USA).

2.2. Preparation of parotid acinar cells

Parotid glands were removed from male Sprague–Dawley rats (200–250 g) anaesthetized by sodium pentobarbital (50 mg/kg). Dispersed acinar cells were prepared by using trypsin and collagenase as described previously [11]. The cells were suspended at a concentration of 5–7 × 10⁶ cells/ml in a Krebs–Ringer bicarbonate solution, containing NaCl (116 mM), KCl (5.4 mM), MgSO₄ (0.8 mM), CaCl₂ (1.8 mM), NaH₂PO₄ (0.96 mM), NaHCO₃ (25 mM), glucose (11.1 mM) and 1% bovine serum albumin (BSA), and incubated at 37°C in O₂/CO₂ (19:1). The cell preparations were over 90% viable, as determined by Trypan blue exclusion.

2.3. Determination of [Ca2+]i

[Ca2+]; was determined with fura-2 essentially as described previously [12,13]. Briefly, the cells, suspended in a Krebs-Ringer bicarbonate solution containing 0.5% BSA, were incubated with fura-2/AM (2 μ M) for 45 min at 37°C. The fura-2 loaded cells were washed (50 g for 5 min) twice, resuspended in a HEPES-buffered Krebs-Ringer solution containing NaCl (120 mM), KCl (5.4 mM), MgSO₄ (0.8 mM), CaCl₂ (1 mM), glucose (11.1 mM), HEPES (20 mM, pH 7.4) and 0.2% BSA, and kept at room temperature. To examine the effect of extracellular Ca2+, fura-2-loaded cells were washed by centrifugation (50 × g for 5 min), and resuspended in a fresh Ca2+-free HEPES-buffered Krebs-Ringer solution containing 1 mM EGTA in a quartz cuvette just before use. Sphingosine was dissolved in ethanol and added (the concentration of ethanol in the medium was 0.3%). The fluorescence of fura-2-loaded cells was measured with a CAF-100 spectrofluorimeter (Nihon Bunkou, Japan) with excitation at 340 nm and 380 nm and emission at 500 nm. [Ca2+], was calculated from the measurement of the ratio of fluorescence intensities [14]. Leakage of fura-2 was negligible by the addition of 50 µM MnCl2 [15].

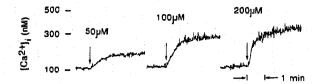


Fig. 1. The effect of sphingosine on [Ca²⁺], in the presence of extracellular Ca²⁺. Fura-2-loaded parotid acinar cells were suspended with 50 μM, 100 μM and 200 μM sphingosine. The addition of sphingosine is indicated by arrows.

3. RESULTS AND DISCUSSION

Fig. 1 depicts a representative of the effect of 50 μ M, 100 μ M or 200 μ M sphingosine on $[Ca^{2+}]_i$ in fura-2-loaded parotid acinar cells. At each concentration, sphingosine remarkably induced the elevation in $[Ca^{2+}]_i$, and the level reached a plateau during the initial 1-min stimulation. The concentration dependency of sphingosine on the changes in $[Ca^{2+}]_i$ is shown in Fig. 2.

Effect of extracellular Ca^{2+} on the increase in $[Ca^{2+}]_i$ induced by sphingosine was examined. As shown in Fig. 3, when cells were suspended in Ca^{2+} -free medium containing 1 mM EGTA (low Ca^{2+} medium), 50 μ M sphingosine failed to increase $[Ca^{2+}]_i$. However, $100 \, \mu$ M and $200 \, \mu$ M sphingosine induced a very slight and transient increase in $[Ca^{2+}]_i$ even at a low extracellular Ca^{2+} concentration. These results suggest that the increase in $[Ca^{2+}]_i$ induced by sphingosine is mostly due to the influx of extracellular Ca^{2+} , and further induces the release of Ca^{2+} from intracellular pools.

The Ca²⁺ influx induced by sphingosine was further confirmed. As shown in Fig. 3, when cells were suspended with sphingosine in low Ca²⁺ medium for 3 min and extracellular Ca²⁺ was subsequently added, a

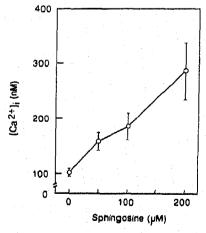


Fig. 2. Concentration-dependent effect of sphingosine on [Ca²⁺]_i. The values of [Ca²⁺]_i in the cells incubated with sphingosine for 1 min are depicted. Results are means ± SE from 4-6 experiments.

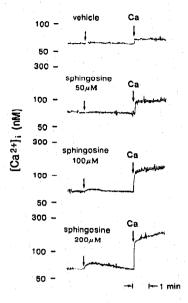


Fig. 3. The effect of sphingosine on $[Ca^{2+}]_i$ in the absence of extracellular Ca^{2+} . Fura-2-loaded parotid acinar cells were suspended with 50 μ M, 100 μ M and 200 μ M sphingosine in Ca^{2+} -free medium containing 1 mM EGTA, and 3 min later, 3 mM Ca^{2+} was added to the medium.

rapid increase in $[Ca^{2+}]_i$ was induced. The increase in $[Ca^{2+}]_i$ depended on the concentration of suspended sphingosine (Fig. 4). In the other study on Ca^{2+} influx, the effect of LaCl₃, which blocks Ca^{2+} influx in parotid cells [9], was examined. When LaCl₃ was added to the medium, 50 μ M sphingosine had no effect and 100 μ M sphingosine resulted in a slight and transient increase in $[Ca^{2+}]_i$ in the presence of extracellular Ca^{2+} (Fig. 5), which showed the same results as shown by the depletion of extracellular Ca^{2+} as shown in Fig. 3. These results support the fact that sphingosine stimulates Ca^{2+} influx.

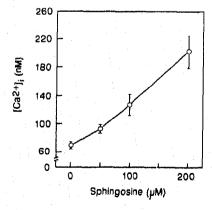


Fig. 4. The increase in [Ca²⁺]₁ as a result of the addition of extracellular Ca²⁺. After pre-incubation with sphingosine for 3 min in low Ca²⁺ medium, the addition of 3 mM extracellular Ca²⁺ increased [Ca²⁺]₁. The values of [Ca²⁺]₁ at 1 min after the addition of Ca²⁺ are depicted. Results are means ± SE from 4-6 experiments.

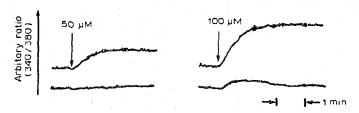


Fig. 5. The effect of sphingosine on $[Ca^{2+}]_i$ in the absence or the presence of LaCl₃. In the medium without (upper) or with (lower) 1 mM LaCl₃, cells were suspended with 50 μ M or 100 μ M sphingosine.

As for the slight increase in $[Ca^{2+}]_i$ induced by sphingosine, no increase in $[Ca^{2+}]_i$ was shown when $100 \,\mu\text{M}$ sphingosine was added to a low Ca^{2+} medium after a transient increase in $[Ca^{2+}]_i$ elicited by methacholine (Fig. 6). Hence, under these conditions, methacholine emptied the agonist-sensitive Ca^{2+} pools. This implies that sphingosine stimulates Ca^{2+} release from agonist-sensitive intracellular pools.

In many types of cells, the effect of sphingosine has been considered to attribute to the inhibition of protein kinase C activity [1-6]. If the effect of sphingosine on $[Ca^{2+}]_i$ in parotid cells was due to the inhibition of protein kinase C, other inhibitors of protein kinase C probably induce a similar effect on $[Ca^{2+}]_i$. Therefore, the effect of other protein kinase C inhibitors, H-7 and K252a, on $[Ca^{2+}]_i$ were examined. However, neither $50-100 \,\mu\text{M}$ H-7, nor K252a induced an increase of $[Ca^{2+}]_i$ in fura-2-loaded parotid acinar cells (data not shown).

In parotid acinar cells, activation of Ca^{2+} -mobilizing receptors such as muscarinic, cholinergic, α -adrenergic and substance P receptors results in the increase in $[Ca^{2+}]_i$ [9,10], and the increase persists in the absence of extracellular Ca^{2+} [12,13]. The agonists produce an increase in $[Ca^{2+}]_i$ even in low Ca^{2+} medium as induced by methacholine (Fig. 6). We demonstrate in this paper that sphingosine induced an increase in $[Ca^{2+}]_i$ and the effect was mostly dependent on extracellular Ca^{2+} . Therefore, it is unlikely that the increase in $[Ca^{2+}]_i$ by sphingosine is due to the activation of the Ca^{2+} -mobilizing receptors.

The increase in [Ca²⁺]_i induced by sphingosine consisted of extracellular Ca²⁺ influx and a slight release of Ca²⁺ from intracellular pools. The Ca²⁺ influx is considered to be a process of refilling the empty intracellular Ca²⁺ pools after the release stimulated by agonists [16], because the elevation of [Ca²⁺]_i was transient and smaller than that seen in the presence of extracellular Ca²⁺ when parotid cells were stimulated by Ca²⁺-mobilizing agonists in the absence of extracellular Ca²⁺ [12,13]. As mechanisms, capacitive Ca²⁺ entry [16,17] and the role of inositol 1,3,4,5-tetrakisphosphate [18] have been demonstrated. Therefore, it may be possible that sphingosine relates to these mechanisms as a kind of modulator of the Ca²⁺ influx.

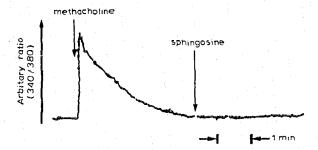


Fig. 6. No effect of sphingosine on $[Ca^{2+}]_i$ after stimulation with methacholine in the absence of extracellular Ca^{2+} . The cells were stimulated by $100 \, \mu M$ sphingosine after stimulation with $100 \, \mu M$ methacholine.

The release of Ca2+ from intracellular pools is stimulated by inositol 1,4,5-trisphosphate (IP3) induced by receptor activation [9,10]. We previously demonstrated that sphingosine induced IP3 formation [19]. However, the increase of IP3 was much slower than that of [Ca2+]i. Furthermore, the IP3 formation induced by sphingosine, even 200 μM sphingosine was completely blocked by the chelation of extracellular Ca²⁺. Therefore, the release of Ca²⁺ from intracellular pools by sphingosine appears not to be caused by IP3. Recently, Ghosh et al. have demonstrated that sphingosine-1-phosphate, the molecule converted from sphingosine within cells, stimulated Ca2+ release from intracellular pools [20]. This mechanism could be conceivable in parotid acinar cells, but it is necessary to carry out further investigations to elucidate this fact.

Acknowledgements: This work was supported in part by a Grant-in-Aid for Scientific Research (No. 02807171) from the Ministry of Education, Science and Culture of Japan and by a Nihon University Research Grant in 1990.

REFERENCES

- Merrill Jr., A.H. and Stevens, V.L. (1989) Biochim. Biophys. Acta 1010, 131-139.
- [2] Hannun, Y.A. and Bell, R.M. (1989) Science 243, 500-507.
- [3] Hannun, Y.A., Loomis, C.R., Merrill Jr., A.H. and Bell, R.M. (1986) J. Biol. Chem. 61, 12604-12609.
- [4] Hannun, Y.A., Greenburg, C.S. and Bell, R.M. (1987) J. Biol. Chem. 262, 13620-13626.
- [5] Wilson, E., Olcott, M.C., Bell, R.M., Merrill Jr., A.H. and Lambeth, J.D. (1986) J. Biol. Chem. 261, 12616-12623.
- [6] Merrill Jr., A.H., Sereni, A.M., Stevens, V.L., Hannun, Y.A., Bell, R.M. and Kinkade Jr., J.M. (1986) J. Biol. Chem. 261, 12610-12615.
- [7] Winicov, I. and Gershengorn, M.C. (1988) J. Biol. Chem. 263, 12179-12182.
- [8] Faucher, M., Girones, N., Hannun, Y.A., Bell, R.M. and Davis, R.J. (1988) J. Biol. Chem. 263, 5319-5327.
- [9] Putney Jr., J.W. (1986) Annu. Rev. Physiol. 48, 75-88.
- [10] Sugiya, H. and Furuyama, S. (1989) Biomed. Res. 10, 111-121.
- [11] Sugiya, H., Tennes, K.A. and Putney Jr., J.W. (1987) Biochem. J. 244, 647-653.
- [12] Merritt, J.E. and Rink, T.J. (1987) J. Biol. Chem. 262, 14912-14916.

- [13] Merritt, J.E. and Rink, T.J. (1987) J. Biol. Chem. 262, 17361-17369.
- [14] Grynkiewicz, G., Poenie, M. and Tsien, R.Y. (1985) J. Biol. Chem. 260, 3440-3450.
- [15] Takemura, H., Thastrup, O. and Putney Jr., J.W. (1990) Cell Calcium 11, 11–17.
 [16] Putney Jr., J.W. (1986) Cell Calcium 7, 1–12.

- [17] Takemura, H. and Putney Jr., J.W. (1989) Biochem. J. 258, 409-412.
- [18] Morris, A.P., Gallacher, D.V., Irvine, R.F. and Petersen, O.H. (1987) Nature 330, 653-655.
- [19] Sugiya, H. and Furuyama, S. (1990) Cell Calcium 11, 469-475.
 [20] Ghosh, T.K., Bian, J. and Gill, D.L. (1990) Science 248, 1653-1656.